

米国企業の協業活動に関する知財戦略の考察

2016年度 国際第1委員会 WG5

井口(本田技研/リーダー) 山口(旭化成)

加藤(大日本住友製薬) 栗(楽天)

西城(住友電装) 小川(NTT/副委員長)

清水(カネカ) 河村(豊田合成)…6/20発表

藤村(豊田中央研究所) 淺井(積水化学)…6/23発表

- 研究テーマについて
- ・事例の分析と考察
 - ① Broadcom社の車載Ethernet
 - ② DuPont社のBio-PDO®
 - ③ Google社のOpen Automotive Alliance
 - ④ Skype社のOpus
- ・考察 4事例の共通点と目的
- ・会員企業への提言

研究テーマ 〈背景〉

標準化・アライアンス・オープンイノベーション

近年、企業間の協業事例が増加

→ 他社資源を使った新たな製品・サービスを展開

米国では・・・

▶ 積極的な協業による多大な利益の創出 米国の産業利益のうち協業形態の割合が2001年以降過半数 <経済産業省: http://www.meti.go.jp/committee/materials2/downloadfiles/g90610a17j.pdf>

▶ エコシステムの高い成熟度

米国:約80% 欧州:約60% アジア:約40%

<NEDO「オープンイノベーション白書」: http://www.nedo.go.jp/library/open_innovation_hakusyo.html>

▶ 訴訟リスクの高さ

保有する特許ポートフォリオとの相関

Google社は携帯OS「Android」の協業事業で他社特許を購入し特許網強化 <知財管理 Vol.62 No.8 2012「Google社の知的財産戦略について」>

研究テーマ 〈目的と調査方法〉

目的

協業活動と特許ポートフォリオの間には相関があるはず

- ⇒ 特許ポートフォリオを、いつ、どのように構築したのか解析
- → 協業の際に**知財部として考慮すべき事項**を 主催者/参画者の立場で考察

調査方法

- ▶ キーワードは、標準化、アライアンス、オープンイノベーション インターネットや論文などの公表情報を基に、事例を収集
- > 絞り込みの条件
 - 1) 主催企業が**米国企業**であること
 - 協業活動の成果が認められること
 - 3) 協業に関連する主催企業の特許が確認できること
- ▶ 協業活動の一連の流れに沿って 特許ポートフォリオの変化とその内容を分析

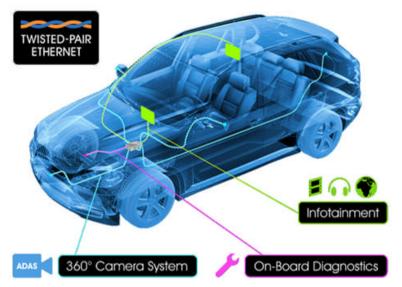
研究テーマ <抽出事例>

抽出事例 ... IT・機械・化学の3分野での4事例

①Broadcom社 車載Ethernet規格「BroadR-Reach®」 に関する OPEN Alliance SIG

②DuPont社 「Bio-PDO®」に関するオープンイノベーション

③Google社 携帯OS「Android」の車載用途展開 に関する Open Automotive Alliance



④Skype社 音声コーデック「Opus」に関する標準化

事例① Broadcom社の車載Ethernet

車載デバイス間の通信にEthernetを適用

2011.11~ OPEN Alliance SIGを設立

- ·Broadcom社が主催
- ・車載Ethernet規格「BroadR-Reach®」 の策定・普及を目指す

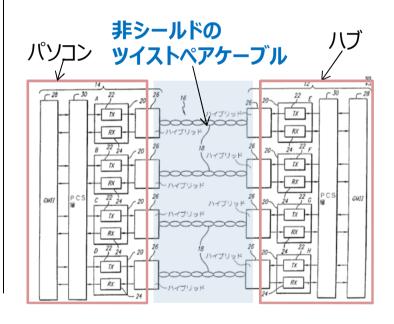
2013~

・独BMWなどで採用開始 →業界標準へ

◆アライアンスの概要

主催企業 B社、ほか2社


参画企業 自動車/機器メーカ など300社以上



事例① 標準化技術の出願推移

特許分析 1 B社の車載Ethernet用データ伝送技術の出願推移

協業開始前に出願を全て完了 → RAND条件で解放 【B社の出願例】 非シールドツイストペアケーブルでの伝送

事例① B社のプレスリリース

B社の主力製品は半導体チップ

2015.10.29

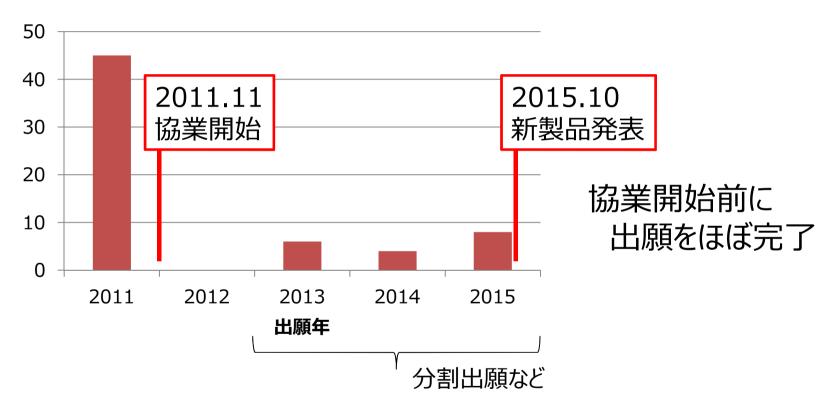
B社車載Ethernet対応半導体チップの新製品発表

http://www.eis-japan.com/release/20151029-2/

- ・複数接続した車載デバイスを それぞれ切り替えるスイッチ機能
- ・先進運転支援システム、車載ゲートウエイ等の機能向けで **自動車メーカへ売り込み**を図っていきたい

車載Ethernetの市場が拡大し 新製品の売上増

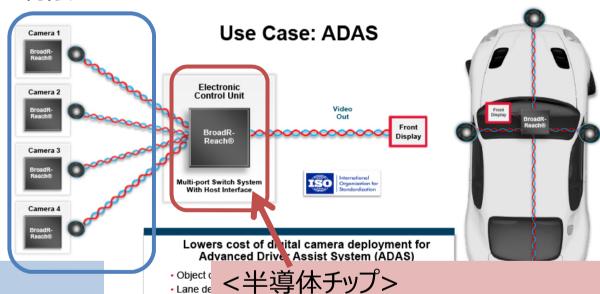
BROADCOM.


BroadR-Reach®

事例① 半導体チップの出願推移

特許分析2 スイッチ機能付半導体チップ(車載Ethernet用)の出願推移

協業とあわせて 対応製品特許を着実に出願権利化



事例① 協業と特許の相関

協業開始前に特許出願

- → 関連技術を特許で囲い込み
- → 実施を参画企業に制限

http://www.opensig.org/ about/compliance/>

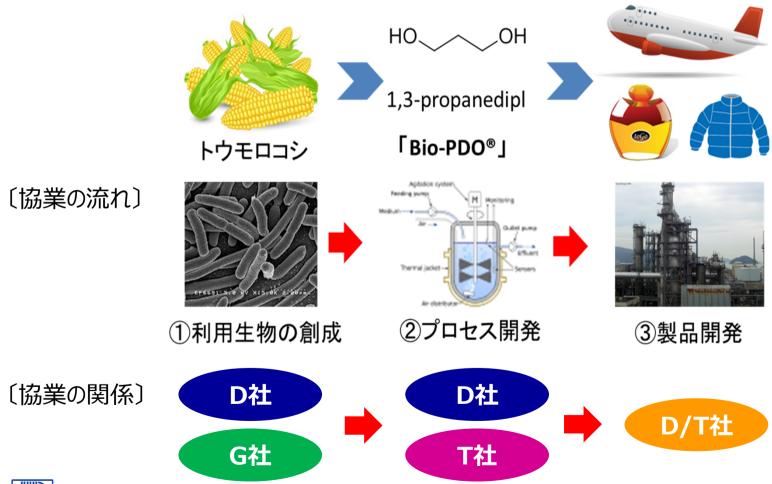
<データ伝送> **規格普及**のためのオープン戦略

規格「BroadR-Reach®」を普及

→ 標準化団体の設立主導 オープンにして自動車分野の市場拡大 収益を得るビジネスモデルの確立

対応製品で収益確保するクローズ戦略

ビジネスモデルに応じた オープン/クローズ戦略の使い分け

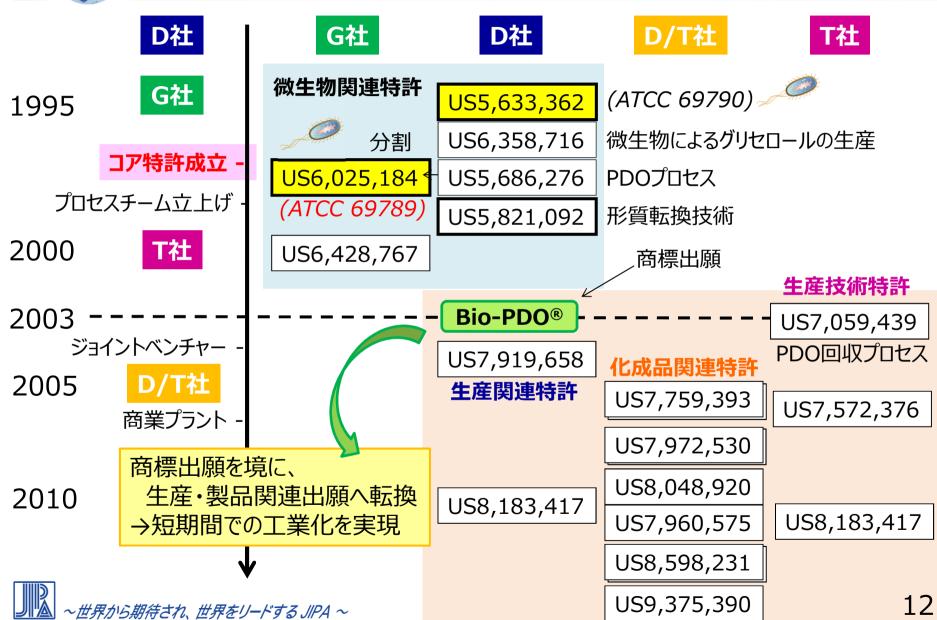


事例② DuPont社のBio-PDO®

E. I. du Pont de Nemours and Company

協業の内容(概要、主催企業、協業の成果)

微生物を用いたトウモロコシからの1,3-プロパンジオール (Bio-PDO®)の生産



11

事例② 協業の流れと特許権

事例② 微生物領域での協業

① 利用生物の探索における協業

	酵素反応	化学反応
反応条件	室温、常圧	高温、高圧
溶媒	水、稀に水 を含む溶媒	水又は <mark>溶媒</mark>
反応特異性	譠	低
基質特異性	恒	低
位置特異性	恒	低
立体特異性	恒	低
基質•産物濃度	低	高

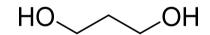
微生物を用いる酵素反応

利点)

穏やかな条件で反応が進行 反応の特異性も高い

課題)

生産性の点において、工業的な化学反応に劣る


Du Pont

US 5,633,362

工業化には高機能化した微生物の創出が鍵!

Glucose

1,3-Propane diol (PDO)

高い技術を有する Genencor社と協業

US 5,686,276

E.coli (ATCC 69790) 35kd from Klebsiella
US 5,821,092
形質転換技術

Genencor

US 6,025,184

E.coli →(ATCC 69789)

PDO生産に適した大腸菌を創出

事例② 生産技術、製品化での協業

② 生産プロセスの開発における協業

スケールアップの工程: ① ラボプラント 10~200 [L]

② パイロットプラント 1,000~10,000 [L]

③ 生産プラント 100~800 [m³]

スケールアップの課題: (i) スケールアップ

(ii) 条件最適化

品質、コスト等の課題

(iii) 洗浄·無菌化技術

③ Bio-PDO®を利用した製品開発における協業

製品の市場優位性の確保 → 生産したBio-PDO®に関する商品の生産 グループ内での付加価値生産を実現

⇒ ジョイントベンチャー設立(Dupont – Tate & Lyle社)

Bio-PDO®由来製品: Susterra® …ポリウレタン、ポリエチレン原料等

Zemea® …コスメティック、香料、家庭用化成品原料等

事例② 協業と特許の相関

① 協業と特許との相関

切り口	考察	
主体	協業に関わる各社が得意分野で基本出願 自社技術を活かす協業相手先を選ぶ目利き	
時間軸	提携、プラント立ち上げ時に、適切なタイミングで 基本特許出願。特許延命の戦略性も	
組織	Bio-PDO®等の成功体験の組織化 イノベーションセンターを設立	

(協業のポイント)

- ・ 開発技術の効率的調達
- ・協業先とのWin-Winの 関係の構築
- ・将来の事業を見据えた 相手先の選択(目利き)
- ・製品を長く保護する為の戦略的な特許出願戦略

② D社におけるオープンイノベーションの取り組み

<Dupont社HP>

- ・2010年にイノベーションセンターを開設
- ・自社の32の技術に関しアイデアを共創
- ・世界13ヵ所に、センターを開設

Bio-PDO以外にも…

- ·太陽光発電関連技術
- ・Kevlar XPTMの新市場掘り起し etc.

事例③ Google社のOAA事例

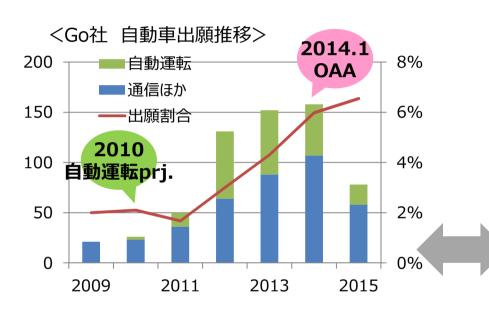
OAAとは? …Open Automotive Alliance Allia

- ・2014.1~ Google社が主催 携帯端末用OS "Android" を 自動車へ適用する取組み
- ·参画…2017.3現在 自動車系50社、周辺機器等22社
- ·2015.5~ Android Auto発表

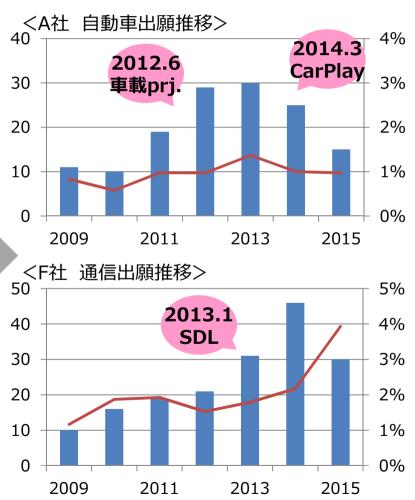
https://www.apple.com/jp/ios/carplay/>

競合サービス

- ·2014.3~ Apple社 CarPlay発表
- ·2013.1~ Ford社 Smart Device Link発足


ポートフォリオより 3社の違いを分析

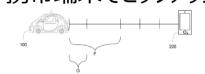
事例③ 各社の出願推移


出願件数(件) 全出願に占める出願割合(%)

Go社は自動運転に注目されがちだが

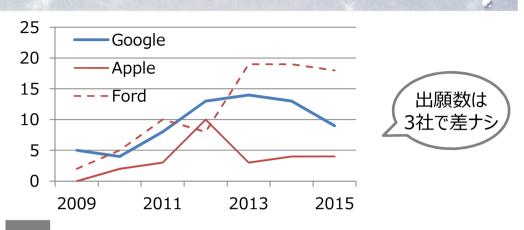
- ·F,A社と比べ、注力度は高い(≥6%)
- ·自動運転 🖠 通信系 🤻

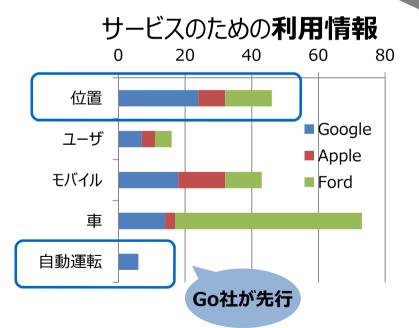
2016.10時点。未公開分は含まず 自動車出願(Go,A社)・・・キーワード 通信出願(F社) ・・・通信系CPC にて抽出

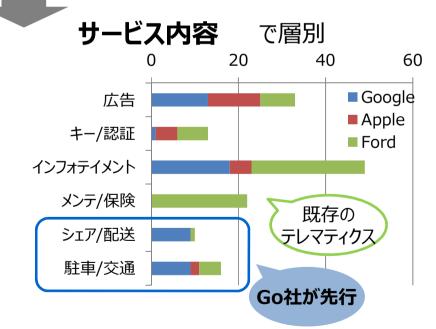

事例③ Go社の出願例

未来…自動車の利用 ほかの車を用いたサービス

US9194168 無人運転車を 携帯端末でピックアップ

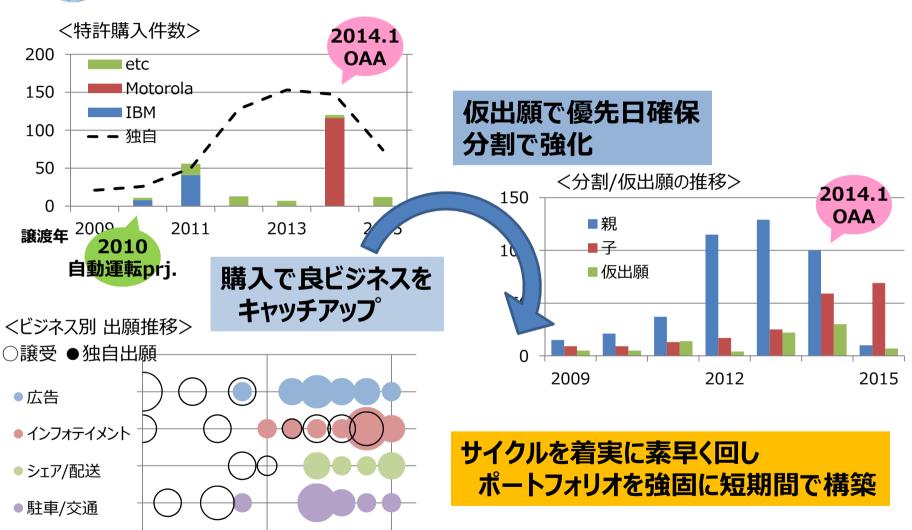



事例③ 各社のサービス/ビジネス特許


サービス/ビジネスに注目して深掘り

ビジネス関連特許の出願件数

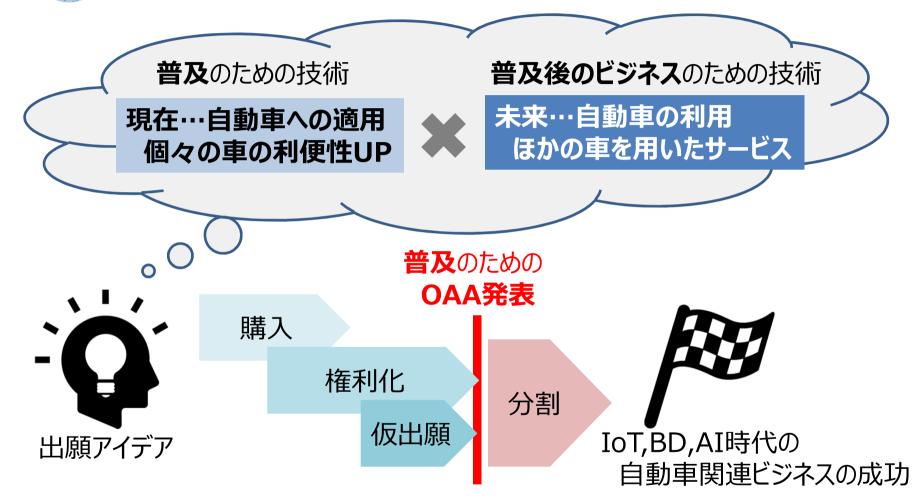
- ・ビジネスモデルCPC(G06Q,G07)
- ·自動車-通信の組合せ(H04W4/04)



Go社は将来ビジネスの出願で先行

事例③ 特許ポートフォリオの強化

2015



2010

出願年 2005

事例③ Go社の特許戦略の考察

Android Auto普及後の 最適なビジネスモデルを支えるためのツールづくり

事例④ Skype社のOpus事例

Skypeとは…

- ・ 通話料無料の インターネット電話サービス
- 2011年にMicrosoft社が買収

Opusとは…

- · Skypeに用いられる音声コーデック
- ・ オープンソースフォーマット
- BSDライセンス
- ・ Skypeはじめ、Google Chrome Cisco Jabber等、多くの製品が対応

BSDライセンス

権利不行使を条件に無償許諾

利用者

事例④ 音声コーデックOpusとは

Skype社 **SILK**

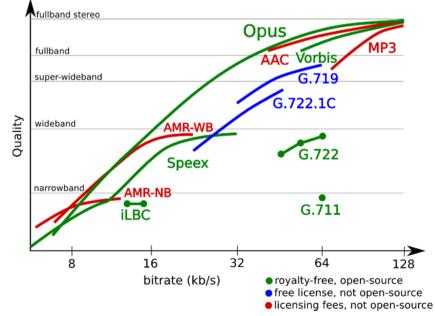
Xiph団体 CELT

Xiph.org(非営利団体) フリーなメディアフォーマット策定を目的

幅広いビットレートへ 非対応

低遅延

共同開発


IETF承認の標準化技術

Opus

CELTとSILKを内包(高品質+低遅延)

- ・ 低ビットレート SILK
- 高ビットレート SILK + CELT
- ・ 低遅延 CELT

他コーデックとの比較 <https://opus-codec.org/comparison/>

協業とOpus特許のタイムライン 事例④

2007/1 SILK Codecの開発開始

US8838444

2009/3

IETFに、広帯域音声コーデックの開発と 標準化WGの立ち上げを提案

US2010/174538A

US8301441	US8352250	US8392178
US8396706	US8433563	US8452606
US8463604	US8655653	US8670981

US7353168

2007/11 CELT Codecの開発開始

協業開始

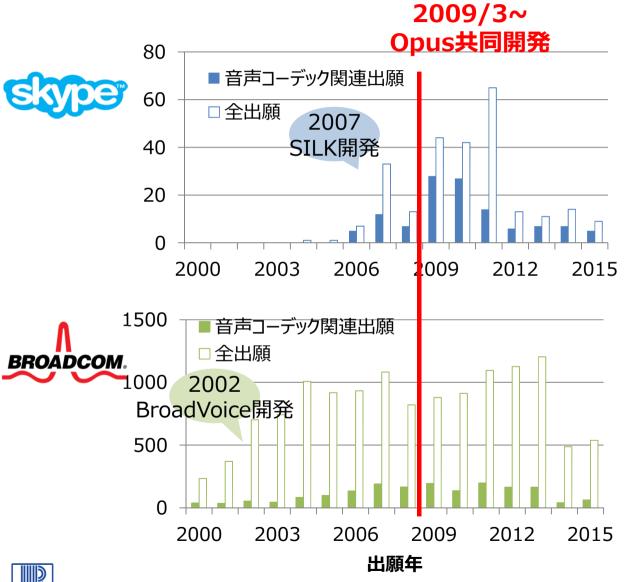
2010/7 CELTとSILKを統合した ハイブリッドフォーマットのプロトタイプが登場

US8738385

2012/2

Opusの標準化がIETFによって承認

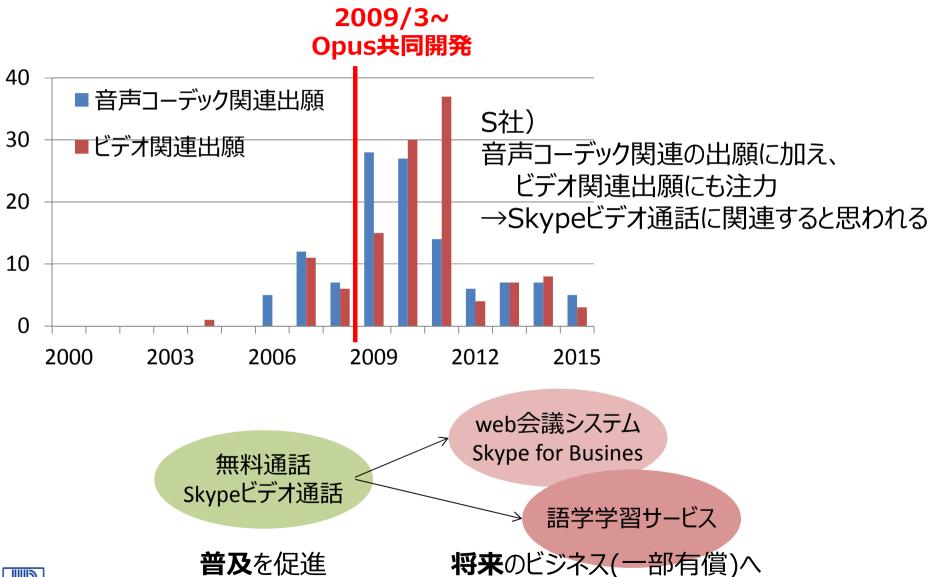
US8838442 US9009036


US9015042

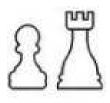
事例④ 音声コーデック出願推移

共同開発が最も進んだ 2009~2010年に…

- ・S社出願がピーク
- ・B社は増減傾向ナシ
- ・X社は出願ナシ(前頁)



S社が最も注力



事例④ ビデオ関連出願推移

事例④ S社の特許戦略の考察

Strategy

STRATEGY

Income

INCOME

Opus関連特許が無償ライセンスされることを知りながら、特許で保護 (Xiphとの協業時点で、無償化は折込済み)

SILK関連特許もOpus標準特許と して認可

Opusをオープンソース(OSS)とし、 BSD条件でライセンス 普及を促進しつつ、 自社ビジネスを他社訴訟より保護

音声コーデック出願と並行して、ビデオ通話に関する出願を強化

Opusの音声コーデックが普及した先の、自社の提供サービスを保護

考察 4事例の共通点

- (1) 協業前に出願 特許ポートフォリオを構築
- (2) 特許技術をパートナーに積極的に利用させる 新たな市場を生み出す
- +a 新たな市場でのさらなるビジネスを想定したポートフォリオを構築

事例	新規市場	+a さらなるビジネス構想
①B社	車載Ethernetを普及	半導体チップのビジネス拡大
②D社	微生物の生産技術を確立	微生物を用いた新製品ビジネス
③Go社	Androidを自動車へ拡大	自動車利用の新規ビジネス
④S社	通話無料サービスの普及	新規ビデオ通話ビジネス

考察 協業の目的

協業の目的 →大きく2つに分類できる

	事例	協業の目的
自社技術の 補完	②D社	自社が見出した微生物の生産技術を確立
	④S 社	自社技術ではカバーできないビットレート領域を補完
自社技術の 普及	①B社	自社の車載Ethernetを普及
	③Go社	自社のAndroidを自動車に適用・普及

いずれであっても、 以下2点の必要性が示唆

- ・協業技術の特許を協業前に出願しておくこと
- ・協業パートナーに利用させることで見込まれる新たな市場でのビジネスを想定し 協業前ないし協業過程で特許ポートフォリオを構築しておくこと

会員企業への提言

協業を主催する立場

- (1) 自社技術の補完を目的
- ✓ 技術補完後のビジネス展開を予測し、特許ポートフォリオを構築
- ✓ 自社と協業候補の保有技術・特許を把握し 協業要否と協業先を見極める"目利き"力
- (2) 自社技術の普及を目的
- **普及の先にあるビジネス**を見据えた特許ポートフォリオの構築
- ✓ 普及を加速させる仕組みを作り、

参画側へのメリットを明示、参画を促し普及を狙う

参画する立場

協業のメリット/デメリットを分析

→ 経営層へ発信

メリット 優れた技術をリーズナブルに利用可 特許係争リスクを低減

デメリット 自社ビジネスの自由度の低下

- ✓ 主催企業の特許ポートフォリオを分析し、 その意図や背景、協業への注力度、係争リスクを推定
- ✓ **主催企業が必要となる特許**を取得しWin-Winの関係を構築

ご清聴有難うございました

~詳しくは、論説をご覧ください~ (知財管理7月号 掲載予定)

~世界から期待され、世界をリードする JIPA ~

